



## ADDRESSING FUTURE COMPUTING ARCHITECTURE WITH SILICON PHOTONICS



**Hugues Metras** Leti, EVP Business Development, Semiconductor Technologies

Leti Workshop @ Semicon West | July 10, 2018 | 1





### ADDRESSING FUTURE COMPUTING ARCHITECTURE WITH SILICON PHOTONICS

Hughes METRAS \_ Leti Workshop @ Semicon West | July 10, 2018



#### **SI-PHOTONICS – MARKET DRIVERS**

#### **HPC and Datacenters**



#### → High Data Rate, Low Power, Low-Cost Interconnects



#### **NEW COMPUTING ARCHITECTURES**

Component interfacing with >100 single mode fibers each of them carrying >10 wavelengths modulated at 10-25 Gbits/s. This would provide a performance of >20 Tbits/s at less than 500 fJ/bit.



→ High Data Rate, Low Power, Low-Cost Interconnects

#### **3D SI-PHOTONICS CONVERGENCE – REQUIREMENTS FOR TECHNOLOGY**

- Aim at heterogeneous integration: lasers, silicon photonics platform, fibers, electronic drivers, PCB
- Optimize performance of individual components

leti

Ceatech

- Use a platform compatible with mass manufacturing
- $\rightarrow$  Find an integration platform combining performance, cost and form factor
  - 3D TSV technologies enable high-speed interconnect between photonic chips and electronic drivers + interface to the PCB host
  - High-density Cu pillar and die-to-wafer hybrid bonding will enable high-quality RF interconnects, high reliability and ultimately a high number of interconnects.





**Silicon Photonics Interposer** 



#### **SI-PHOTONICS DEVELOPMENTS**

• Integration of SiN layer on top of the Si  $\rightarrow$  t







- 3-5 die bonding on Silicon
- CMOS compatible Hybrid Laser

• Single Mode Fiber Alignment





Multi-cores bottlenecks

Optical Network On Chip

#### Increasing the diversity of solutions to optimize performance and integration



#### **INTEGRATED HYBRID III/V ON SILICON LASER RESULTS**



17





- Co-integration hybrid IIIV/Silicon DBR laser + silicon Mach-Zehnder modulator.
- 25Gb/s transmission at 1.3μm up to 10km.

T. Ferrotti et al. ,1.3µm hybrid III-V on Silicon Transmitter Operating at 25Gb/s SSDM, (2016)



- Demonstration of a new back side integration of a hybrid laser compatible with CMOS based photonic platform.
- Single wavelength behavior demonstrated with SMSR higher than 35dB.
- Lasing threshold around 45 mA with an output power > 1.15mW at 200mA

J.Durel et al., First Demonstration of a Back-Side Integrated Heterogeneous Hybrid III-V/Si DBR Lasers for Si-Photonics Applications, IEDM (2016)

# CMOS-compatible Hybrid laser



- Front side integration of a hybrid III-V/Si laser in a fully CMOS compatible 200mm technology.
- CMOS compatible metallization (no noble metals) and patterning (no lift-off) processes.
- Single wavelength behavior demonstrated with SMSR higher than 50dB.
- Lasing threshold around 60 mA with a 3mW output power at 190mA
- B. Szelag et al., Hybrid III-V/Si DFB laser integration on a 200 mm fully CMOS-compatible silicon photonics platform





- Silicon photonics: a mature solution supported by industrial foundries
- CEA-Leti has developed a mature Si-platform, CMOS compatible, supported by standard EDA tools and available through MPW shuttles or tailored projects.
- On going transition from 200mm → 300mm wafers
- Leti is working on **new options** to increase the level of integration and complexity of the silicon photonics circuits

NEW FUNCTIONS AND OPPORTUNITIES BROUGHT BY OUR RECENT INVESTMENTS IN 300 mm TECHNOLOGIES

### Thank you for your attention!



Leti, technology research institute Commissariat à l'énergie atomique et aux énergies alternatives Minatec Campus | 17 rue des Martyrs | 38054 Grenoble Cedex | France www.leti-cea.com

