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HPC and Datacenters

Performance Development
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= High Data Rate, Low Power, Low-Cost Interconnects



Component interfacing with >100 single mode fibers
each of them carrying >10 wavelengths modulated at
10-25 Ghits/s. This would provide a performance of
>20 Thits/s at less than 500 fJ/bit .

NEW COMPUTING ARCHITECTURES
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= High Data Rate, Low Power, Low-Cost Interconnects
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3D SI-PHOTONICS CONVERGENCE — REQUIREMENTS FOR TECHNOLOGY

* Aim at heterogeneous integration: lasers, silicon photonics platform, fibers,
electronic drivers, PCB

* Optimize performance of individual components
e Use a platform compatible with mass manufacturing

—> Find an integration platform combining performance, cost and form factor

— 3D TSV technologies enable high-speed interconnect between photonic chips and
electronic drivers + interface to the PCB host

— High-density Cu pillar and die-to-wafer hybrid bonding will enable high-quality RF
interconnects, high reliability and ultimately a high number of interconnects.

Silicon Photonics Interposer




SI-PHOTONICS DEVELOPMENTS

= Integration of SiN layer on top of the Si > t

SiN
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= 3-5die bonding on Silicon Multi-cores bottlenecks

= CMOS compatible Hybrid Laser

= Optical Network On Chip

Increasing the diversity of solutions to optimize pe rformance and integration
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Hybrid 111-V/silicon
DBR Laser
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T. Ferrotti et al. ,1.3um hybrid I1l-V on Silicon Transmitter Operating
at 25Gb/s SSDM, (2016)

= Co-integration hybrid
[11V/Silicon DBR laser +
silicon Mach-Zehnder
modulator.

= 25Gb/s transmission at
1.3pum up to 10km.

Back-Side Integrated Hybrid laser

Hybrid laser
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= Demonstration of a new back side integration
of a hybrid laser compatible with CMOS based
photonic platform.

= Single wavelength behavior
with SMSR higher than 35dB.

= Lasing threshold around 45 mA with an output
power > 1.15mW at 200mA

J.Durel et al., First Demonstration of a Back-Side Integrated
Heterogeneous Hybrid 11I-V/Si DBR Lasers for Si-Photonics
Applications, IEDM (2016)

demonstrated

1 CMOS-compatible Hybrid laser
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=  Front side integration of a hybrid IlI-V/Si laser in
a fully CMOS compatible 200mm technology.

=  CMOS compatible metallization (no noble
metals) and patterning (no lift-off) processes.

= Single wavelength behavior demonstrated with
SMSR higher than 50dB.

= Lasing threshold around 60 mA with a 3mW
output power at 190mA

B. Szelag et al., Hybrid 111-V/Si DFB laser integration on a 200 mm
fully CMOS-compatible silicon photonics platform
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Record of uniaxial stress in Ge: 4.9 %
Record of biaxial stress in Ge: 1.9 %

>

Highly strained germanium: | |
Direct band gap material?

Unstrained germanium:
Poor light emitter

No lasing effect yet

= Residual strain amplification of GeOl substrates

GeOl Photonic

200 mm wafer

HF wet etching

Direct bandgap behavior demonstrated

GeSn alloys approach

Temperature (K)

V.Reboud et al., Progress in Crystal Growth and Characterization of Materials, 63, 2, 2017, 1-24
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= Low temperature GeSn growth on 8” wafer
= Step-graded GeSn buffers approach

= GeSn layers with Sn content up to 16%

= Lasing effect in GeSn micro-disks up to 180K

= Qut of equilibrium growth of GeSn at low temperature

SnCl, S T° drives %Sn
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Ge buffer: 1.3— 2.5 ym

Si substrate

= Lasing effect

AFM scan

RMS =26nm &
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V. Reboud etal., Appl. Phys. Lett. 111, 092101 (2017).
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CONCLUSIONS

Silicon photonics: a mature solution supported by industrial foundries

= CEA-Leti has developed a mature Si-platform, CMOS compatible, supported by standard EDA
tools and available through MPW shuttles or tailored projects

= On going transition from 200MmMm -2 300mm wafers

= Leti is working on N€W OptiOﬂS to increase the level of integration and complexity of the
silicon photonics circuits

NEW FUNCTIONS AND OPPORTUNITIES BROUGHT BY OUR RECE NT
INVESTMENTS IN 300 mm TECHNOLOGIES
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